博客
关于我
PAT-BASIC1062——最简分数
阅读量:215 次
发布时间:2019-02-28

本文共 3424 字,大约阅读时间需要 11 分钟。

我的PAT-BASIC代码仓:

原题链接:

题目描述:

知识点:欧几里得最大公约数算法

思路一:通分后比较分子

最简分数的定义:分子分母的最大公约数为1,这涉及到欧几里得最大公约数算法。关于欧几里得最大公约数算法的伪码,可以参考中的分析。

将分数的分母都变成M1 * M2 * K。

题目规定了给出的所有整数不超过1000,但如果用这个思路,M1 * M2 * K最大值为10 ^ 9,再加上题给的分数可能是假分数,分子不一定比分母要小,分子可能会超出int型的范围,我们需要用long型变量存储。否则无法通过测试点2。

本题有一个坑点:

N1 / M1不一定比N2 / M2要小,可能需要我们换一个顺序。如果不考虑到这一点,无法通过测试点1。

时间复杂度和空间复杂度的分析对于本题来说意义不大。

C++代码:

#include
#include
#include
using namespace std;int calculateIndexSlide(string s);long calculateNumerator(string s);long calculateDenominator(string s);long gcd(long num1, long num2);int main(){ string input1; string input2; cin >> input1 >> input2; long N1 = calculateNumerator(input1); long M1 = calculateDenominator(input1); long N2 = calculateNumerator(input2); long M2 = calculateDenominator(input2); long K; cin >> K; long minNumerator = K * M2 * N1; long maxNumerator = K * M1 * N2; if(minNumerator > maxNumerator){ long temp = minNumerator; minNumerator = maxNumerator; maxNumerator = temp; } vector
numerators; for(long i = 1;; i++){ if(M1 * M2 * i >= maxNumerator){ break; } if(gcd(K, i) == 1 && M1 * M2 * i > minNumerator){ numerators.push_back(i); } } for(int i = 0; i < numerators.size(); i++){ cout << numerators[i] << "/" << K; if(i != numerators.size() - 1){ cout << " "; } } return 0;}int calculateIndexSlide(string s){ for(int i = 0; i < s.length(); i++){ if(s[i] == '/'){ return i; } } return -1;}long calculateNumerator(string s){ int indexSlide = calculateIndexSlide(s); long N = 0; for(int i = 0; i < indexSlide; i++){ N = N * 10 + (s[i] - '0'); } return N;}long calculateDenominator(string s){ int indexSlide = calculateIndexSlide(s); long M = 0; for(int i = indexSlide + 1; i < s.length(); i++){ M = M * 10 + (s[i] - '0'); } return M;}long gcd(long num1, long num2){ if(num2 == 0){ return num1; } return gcd(num2, num1 % num2);}

C++解题报告:

思路二:直接用浮点数进行比较

思路一这么麻烦,还需要通分,何不直接用浮点数进行比较呢?这样也就避免了int型数据越界的问题。

C++代码:

#include
#include
#include
using namespace std;int calculateIndexSlide(string s);int calculateNumerator(string s);int calculateDenominator(string s);int gcd(int num1, int num2);int main(){ string input1; string input2; cin >> input1 >> input2; int N1 = calculateNumerator(input1); int M1 = calculateDenominator(input1); int N2 = calculateNumerator(input2); int M2 = calculateDenominator(input2); int K; cin >> K; double min = 1.0 * N1 / M1; double max = 1.0 * N2 / M2; if(min > max){ double temp = min; min = max; max = temp; } vector
numerators; for(int i = 1;; i++){ if(1.0 * i / K >= max){ break; } if(gcd(K, i) == 1 && 1.0 * i / K > min){ numerators.push_back(i); } } for(int i = 0; i < numerators.size(); i++){ cout << numerators[i] << "/" << K; if(i != numerators.size() - 1){ cout << " "; } } return 0;}int calculateIndexSlide(string s){ for(int i = 0; i < s.length(); i++){ if(s[i] == '/'){ return i; } } return -1;}int calculateNumerator(string s){ int indexSlide = calculateIndexSlide(s); int N = 0; for(int i = 0; i < indexSlide; i++){ N = N * 10 + (s[i] - '0'); } return N;}int calculateDenominator(string s){ int indexSlide = calculateIndexSlide(s); int M = 0; for(int i = indexSlide + 1; i < s.length(); i++){ M = M * 10 + (s[i] - '0'); } return M;}int gcd(int num1, int num2){ if(num2 == 0){ return num1; } return gcd(num2, num1 % num2);}

C++解题报告:

 

转载地址:http://ihli.baihongyu.com/

你可能感兴趣的文章
Nginx log文件写入失败?log文件权限设置问题
查看>>
Nginx Lua install
查看>>
nginx net::ERR_ABORTED 403 (Forbidden)
查看>>
Nginx SSL私有证书自签,且反代80端口
查看>>
Nginx upstream性能优化
查看>>
Nginx 中解决跨域问题
查看>>
nginx 代理解决跨域
查看>>
Nginx 动静分离与负载均衡的实现
查看>>
Nginx 反向代理 MinIO 及 ruoyi-vue-pro 配置 MinIO 详解
查看>>
nginx 反向代理 转发请求时,有时好有时没反应,产生原因及解决
查看>>
Nginx 反向代理解决跨域问题
查看>>
Nginx 反向代理配置去除前缀
查看>>
nginx 后端获取真实ip
查看>>
Nginx 多端口配置和访问异常问题的排查与优化
查看>>
Nginx 如何代理转发传递真实 ip 地址?
查看>>
Nginx 学习总结(16)—— 动静分离、压缩、缓存、黑白名单、性能等内容温习
查看>>
Nginx 学习总结(17)—— 8 个免费开源 Nginx 管理系统,轻松管理 Nginx 站点配置
查看>>
Nginx 学习(一):Nginx 下载和启动
查看>>
nginx 常用指令配置总结
查看>>
Nginx 常用配置清单
查看>>